pISSN: 1598-3293

영어영문학연구, Vol.66 no.1 (2024)

DOI : 10.18853/jjell.2024.66.1.005

An Analysis of the Predictive Power of Four Models in Machine Learning and Deep Learning : Focusing on the Reviews of the Movie Noryang

Kang, Namkil

(Far East University)

This article is two-fold. The ultimate goal of this article is to provide a big data analysis of 330 reviews of the movie Noryang and to evaluate the Naive Bayes model, the Random Forests model, the DNN model, and the LSTM model in machine learning and deep learning. A point to note is that the name Yi, Sun-shin was the most widely used by viewers, followed by the word movie, and the word general, in that order. A major point of this article is that the name Yi, Sun-shin and the word movie showed up twice as the first keyword. This in turn implies that these keywords are the most noteworthy ones. The sentiment analysis argues that about 75% of viewers think of the film as well-made and that they were highly satisfied with it. In this paper, we used the Naive Bayes model, the Random Forests model, the DNN model, and the LSTM model and made them predict whether each review is positive or negative. The Random Forests model works well for our data, whereas the Naive Bayes model does not. When learning took place 25 times, the DNN model worked well for our data (its accuracy rate is 82.76%). When it comes to the LSTM model, its accuracy did not improve even though learning took place 9 times. Yet, the LSTM model is slightly better than the DNN model with respect to the accuracy rate of test data.
  빅 데이터,기계학습,딥러닝,모델,인공지능

Download PDF list

(우)24328 강원특별자치도 춘천시 공지로 126 춘천교육대학교 영어교육과     [개인정보보호정책]
농협 352-2001-3534-63 (예금주: 이해련)
Copyright © The Jungang English Language and Literature Association of Korea. All rights reserved.